
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 234
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 BIG DATA – IMPORTANCE OF HADOOP
DISTRIBUTED FILESYSTEM

Ankur Chaudhary, Pankaj Singh

Abstract - When a dataset outgrows the storage capacity of a single physical machine, it becomes necessary to partition it across a number of separate
machines. Filesystems that manage the storage across a network of machines are called distributed filesystems. Since they are network-based, all the
complications of network programming kick in, thus making distributed filesystems more complex than regular disk filesystems. It’s not easy to measure
the total volume of data stored electronically, but an IDC estimate put the size of the “digital universe” at 0.18 zettabytes in 2006, and is forecasting a
tenfold growth by 2011 to 1.8 zettabytes.* A zettabyte is 1021 bytes, or equivalently one thousand exabytes, one million petabytes, or one billion
terabytes. This flood of data is coming from many sources as mentioned below –

• The New York Stock Exchange generates about one terabyte of new trade data perday.
• Facebook hosts approximately 10 billion photos, taking up one petabyte of storage.
• Ancestry.com, the genealogy site, stores around 2.5 petabytes of data.
• The Internet Archive stores around 2 petabytes of data, and is growing at a rate of 20 terabytes per month.
• The Large Hadron Collider near Geneva, Switzerland, will produce about 15 petabytes of data per year.

Index Terms— Hadoop, Big Data, HDFS, Distributed Filesystem, Namenode, DataNode, dfsadmin

—————————— ——————————

1. INTRODUCTION

HDFS is a distributed, scalable, and portable file system
written in Java for the Hadoop framework. HDFS is the
answer of storage industry for unstructured and huge
amount of data which incurs huge amount of cost and fault
tolerance. It is a fault tolerant file system designed to store
data in a reliable manner even if failures like namenode,
datanode and network occur. It works on a master slave
architecture wherein a master server manages access to files
and slave for storing user data via data nodes.

An advantage of using HDFS is data awareness between
the job tracker and task tracker. It is used for Big Data and
compliments Online Analytical Processing (OLAP) and
Online Transactional Processing (OLTP).

2. WHEN DO WE NEED HADOOP DISTRIBUTED
FILE SYSTEM?

Handling small amount of data like few GB of data is
possible in traditional distributed file systems .The real
issue comes when we deal in so much data i.e. data in 1000s
of TBs that it becomes unrealistic to be stored via traditional
DFS, that’s where HDFS comes into picture. It handles this

data via parallel computing. It is highly reliable as it stores
data via replication i.e. storing a cluster* of information on
another server as a backup so that thefailure of a server
does not impact the availability of that cluster of data.

HDFS can be used with commodity hardware and
there is no need to share disks between different
servers.

*Namenode: It manages File system namespace and also
handles File access by clients

*Datanode: It manages storage associated with the nodes

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Java_(software_platform)

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 235
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

3. PREREQUISITES FOR HDFS

Following types of node setups are available:

Single Node Setup is done for first time users. Both
Datanode and Namenode are on the same machine. Cluster
Setup for large, distributed clusters. Namenode and
Datanode are on different machine. Software (Java 1.6.x
must be installed and ssh must be installed and sshd must
be running) must be installed on all the machines.

4. HOW DOES IT WORK?

A Hadoop cluster consists of one Namenode* and multiple
Datanodes*. HDFS follows Master-Slave Architecture *

NameNode: Master

DataNode: Slave

Let us take an example of a File which stores information of
all employees in a company across the globe .The
information is stored in different servers segregated by the
countries. Now in Hadoop the entire information will be
stored in a cluster and to obtain entire information
individual from all the servers is needed. Now to safeguard
the information against failure of invidual servers,
hadoop makes copies of the data on a server on 2 additional
servers. This increases data availability in hadoop.

*Cluster: A Cluster is a collection of different racks in a
network.
Rack: A rack is a collection of different nodes (computers) in a
network. There are typically around 30 computers or nodes in
a rack.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 236
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

In HDFS a File is broken into one or more blocks, which
stores information by a set of datanodes. The Namenode
maps datanodes to blocks and performs operations like
Open,Close and Rename files/Directories. The datanodes
on the other hand perform operations like block creation;
Deletion as instructed by Namenode and also serves read
and write requests on the file.

5. HOW DOES APPLICATIONS ACCESS DATA IN
HDFS?

Applications access data in HDFS using File system* Java
API. A C language wrapper for this Java API is also
available.

Command Description

bin/hadoop dfs -rmr
/dir2

Remove a directory
named /dir2

bin/hadoop dfs -mkdir
/dir1

Create a directory
named /dir1

NameNode Commands:

Used to Run NameNode of HDFS

Command Description

hadoop namenode [-
format]

Formats NameNode

hadoop namenode [-
upgrade]

Upgrades NameNode
to new hadoop version.

hadoop namenode [-
rollback]

Rollback the namenode
to the previous version.

hadoop namenode [-
finalize]

Removes previous
version of file system.
Rollback is not available
after this operation.

hadoop namenode [-
importCheckpoint]

Loads image from a
checkpoint directory
and saves it into the
current one.

DataNode Commands:

Used to Run DataNode of HDFS

Command Description

hadoop datanode [-
rollback]

Rollback the datanode
to the previous version.

dfsadmin commands:

Used to run HDFS dfsadmin client

Command Description

hadoop dfsadmin [-conf | D |
fs | jt |files] [-report]

Displays basic filesystem
information

hadoop dfsadmin [-conf | D |
fs | jt |files] [-safemode enter
| leave | get | wait]

Does not accept changes
to Namespace .It is used
for Namenode
maintenance.

hadoop dfsadmin [-conf | D |
fs | jt |files] [-refreshNodes]

Refreshes Nodes and
excludes datanodes that
are decommissioned.

*Master-Slave Architecture: An architecture where one device
has unidirectional control over other device/s .In this case
Namenode has unidirectional control over DataNode.

*File System (FS) shell includes various shell-like commands
that directly interact with the Hadoop Distributed File
System (HDFS) as well as other file systems that Hadoop
supports, such as Local FS, HFTP FS, S3 FS, and others.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 237
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

hadoop dfsadmin [-conf | D |
fs | jt |files] [-
finalizeUpgrade]

Datanodes and
Namenodes remove their
previous versions.

hadoop dfsadmin [-conf | D |
fs | jt |files] [-
upgradeProgress status |
details | force]

Requests the details of
current upgrade or force
the upgrade to proceed.

hadoop dfsadmin [-conf | D |
fs | jt |files][-metasave
filename]

Saves Namenode's
primary data structures to
filename specified by
hadoop.log.dir property.

hadoop dfsadmin [-conf | D |
fs | jt |files][-setQuota
<quota>
<dirname>...<dirname>]

Set the quota for each
directory

hadoop dfsadmin [-conf | D |
fs | jt |files] [-clrQuota
<dirname>...<dirname>]

Clears the quota for each
directory

6. LIMITATIONS OF HDFS:

HDFS was designed for mostly immutable files* and may
not be suitable for systems requiring concurrent write
operations. Another limitation of HDFS is that it cannot
be mounted directly by an existing operating system.

7. CONCLUSION:

HDFS is a distributed file system which gives high
performance when used with large Clusters of data.
However its performance is low when we deal with small
volumes of data where smaller I/O operations are involved
due to performance bottleneck. Thus HDFS is not the
preferred medium of storage in case of web applications. It

is optimum to work with commodity hardware, thus
minimizing costs with increased performance as compared
to traditional DFS. Therefore HDFS is the market leader in
Distributed file systems in most of the organizations
dealing with large chunks of data.

8. REFERENCES
[1] Dhruba Borthakur, the Hadoop Distributed File System:

Architecture and Design, pages 137–150, 2004.
[2] Apache Hadoop Project. Available:

http://hadoop.apache.org.
[3] Hadoop Distributed File System. Available:

http://hadoop.apache.org/common/docs/current/hdfs
design.html..

[4] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. In OSDI’04: Proceedings of the
6th Symposium on Opearting Systems Design &
Implementation, pages 10–10, 2004.

[5] R. Abbott and H. Garcia-Molina. Scheduling I/O requests
with deadlines:A performance evaluation. In Proceedings of
the 11th Real-Time Systems Symposium, pages 113–124, Dec
1990.

[6] S. Ghemawat, H. Gobioff, S. Leung. “The Google file
system,” In Proc. of ACM Symposium on Operating Systems
Principles, Lake George,NY, Oct 2003, pp 29–43.

[7] S. Weil, S. Brandt, E. Miller, D. Long, C. Maltzahn, “Ceph: A
Scalable, High-Performance Distributed File System,” In
Proc. of the 7th Symposium on Operating Systems Design
and Implementation, Seattle, WA, November 2006.

[8] Apache Hadoop. http://hadoop.apache.org/
[9] R. Chaiken, B. Jenkins, P. ake Larson, B. Ramsey, D. Shakib,

S. Weaver, and J. Zhou. Scope: easy and efficient parallel
processing of massive data sets. PVLDB, 1(2):1265–1276,
2008.

*Immutable files: Immutable files prohibit changes are files
which are locked (via immutable flags) i.e. cannot be
modified. A file whose immutable flags have been enabled
cannot be modified, despite the user having Read &
Write permissions on that object.

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Mount_(computing)

